

放送大学山口学習センターサークル

機関誌 No. 63

Mar. 16, '14. 文責 井手明雄

1、第七十回パソコン同好会

- (1) 開催日: 2月16日(日)13:00~15:00
- (2) 場 所: 放送大学山口学習センター小講義室(山口大学・大学会館内)
- (3) 内 容: ① エクセルで各種関数を使って統計処理をすることを試みた。 例題を 提示し、COUNT、SUM、AVERAGE、MAX、MIN、MEDIAN、 RANK.AVG、STDEV.S など関数を使用した。
 - ② その他 特になし

2、謝辞

大学から、サークル活動支援として50円切手を160枚いただきました。ありがとうございました。

3, Q. & A

Q. アニメの gif ファイルを実行するには ?

A. gifファイルを選択し、「Internet Explorer」で開きます。

この gif ファイルは、USB フラッシュメモリの中の「ジャンプする蛙.gif」というファイルです。パワーポイント上でスライドに挿入し、スライドショーでも実行できます。文書の上では単に静止絵です。

4, 第七十一回パソコン同好会

- (1) 開催日: 3月16日(日)13:30~15:30
- (2) 場 所: 放送大学山口学習センター小講義室(山口大学・大学会館内)
- (3) 内容: ① エクセルで各種関数を使う。放送大学授業科目「身近な統計」において使われている例題を取り扱う
 - ② 各自で課題を出し合い、解決法を検討する。
 - ③ その他

エクセル演習 6

関数の利用 ~統計計算 2~

放送大学印刷教材「身近な統計」で扱っている例題から

データをキーインするのは面倒なので USB フラッシュメモリの中に各種のデータ及び課題の解答を用意しました。参考にしてください。

1,2章から

- 24	А	В	С	D	
1	日本	人海外旅行	の地域別訪	問者数	
2	訪問地域	訪問者数 (度数)	構成比率 (相対度数)	累積比率 (累積相対度数)	
3	アジア	10954147			
4	南北アメリカ	4589816			
5	ヨーロッパ	4547593			
6	オセアニア	1223969			
7	アフリカ	105289			
8	合計	21420814			
9	27703.030				

4	А	В	С	D		
1	日本	人海外旅行	の地域別訪	問者数		
2	訪問地域	訪問者数 (度数)	構成比率 (相対度数)	累積比率 (累積相対度数)		
3	アジア	10954147	51.14%	51.14%		
4	南北アメリカ	4589816	21.43%	72.56%		
5	ヨーロッパ	4547593	21.23%	93.79%		
6	オセアニア	1223969	5.71%	99.51%		
7	アフリカ	105289	0.49%	100.00%		
8	合計	21420814	100.00%			
a						

表 1、構成比率、累積比率

表 2、表1の実施結果

表1の訪問者数の合計数に対する各地訪問者数の比率(構成比率)と累積(累積比率)の相対度数を求めます。関数を用いず単なる計算です。

解答: セル C3 に「=B3/\$B\$8」、セル <math>D3 に「=SUM(\$C\$2:C3)」を入力、実行し、そのセルのフィルハンドルを C7、D7 までドラッグします。結果は表 2 です。

2. 4章から

表3はダルビッシュ有投手のストレート、スライダー、カーブを投球したときの球速のデータです。四分位数関数を使って、各項目の最小値、第1四分位数、第2四分位数、第3四分位数、最大値を求めてください。

四分位数関数の書式は、「=QUARTILE(配列、戻り値)」です。

配列は、対象となる数値データを含む配列またはセル範囲を指定します。

戻り値は、戻り値として返される四分位数の内容を、 $0 \sim 4$ の数値で指定します。戻り

1	Α	В	С	D	Е	F	G	Н
		- 1 - 1 - 1	カーブ	5数要約				
1	(930球)	(764球)	(194球)	(Five Number Summary)				
2	147	121	107	QUATILE 関数(戻り値)	,	ストレート	スライダー	カーブ
3	148	129	108		最小値			
4	149	128	100	j	第1四分位数 (2596点)			
5	1 46	125	102		第2四分位数 (中央値)			
6	148	123	98	3	第3四分位数 (7596点)			
7	145	129	93	4	最大値			

表 3 四分位数

1 四分位数 (25%) 、2 は第 2 四分位数 = 中位数 (50%)、3 は 第 3 四分位数 (75%)、4 は 最大値です。

解答: セル F3 に「=QUARTILE(A\$2:A\$7, \$D3)」として、そのセルのフィルハンドルを H3 まで、更に H7 までドラッグします。

-28	А	В	С	D	Е	F	G	Н
1	ストレート (930球)	スライダー (764球)	カーブ (194球)	5数要約 (Five Number Summary)				
2	147	121		QUATILE 関数(戻り値)		ストレート	スライダー	カーブ
3	148	129		0	最小値	145	121	93
4	149	128	100		第1四分位数 (2596点)	146.25	123.5	98.5
5	146	125	102	2	第2四分位数 (中央値)	147.5	126.5	101
6	148	123	98	3	第3四分位数 (7596点)	148	128.75	105.75
7	145	129	93	4	最大値	149	129	108

表 4 四分位数 実施結果

													_
- 41	A	В	С	D	Е	F	G	19			htt-7 () .	±1000 −	
1	0040 - 11	L" -	/ 004-	カ 原生 / a	00±===	#EDIL 6	\ 'AR -T \	20	最大値	0.339	相のし	<u> </u>	_
2	2010セ・リ	ークナー	- 山別打	平一頁(100打席	蚁以上 0.)選于)	22	75%	0.264	0.307	0.287	
3	No.	中日	阪神	巨人	ヤクルト	広島	横浜	23	中央値	0.258	0.297	0.277	
4	1	0.327	0.349	0.281	0.358	0.306	0.315	24	25%	0.235	0.272	0.257	_
5	2	0.294	0.301	0.304	0.300	0.309	0.257	25	最小値	0.215	0.241	0.163	
6	3	0.339	0.301	0.308	0.276	0.267	0.294	26 27					
7	4	0.0000000000000000000000000000000000000	0.303	0.300	0.270	0.207	0.252	28			グラフ	7用データ	
								29	最大値-75%	0.075	0.043	0.021	_
8	5	0.258	0.296	0.273	0.293	0.263	0.273	30	75% - 中央値	0.006	0.010	0.010	_
9	6	0.244	0.350	0.288	0.245	0.245	0.286	31	中央値-25%	0.023	0.025	0.020	_
10	7	0.263	0.241	0.287	0.199	0.262	0.187	32	25% - 最小値	0.235	0.272	0.257	-
11	8	0.218	0.255	0.268	0.300	0.285	0.316	3/1					-
12	9	0.261	0.255	0.263	0.309	0.207	0.308		表 6	グラ	うフ作り	成用デ	•
13	10	0.215	0.297	0.185	0.246	0.259	0.208						
14	11	0.235	0.289	0.239	0.298	0.220	0.246						
15	12	0.220	Distriction of the second	0.163	0.230	0.318	0.205						
16	13	0.247			0.268	0.324	0.202						
17	14				3.200	0.246	0.190						
10	15					0.210	0.100						

作成用データ

0.292

0.206

0.024

0.038

0.049

0.300

0.276 0.246

0.024

0.030

0.301 0.267

0.034

0.015

0.046

表 5 チーム別打率一覧

次に、2010年セ・リーグ別打率一覧(表5)から各チーム別の打率の箱ひげ図を作成し ましょう。手順は、表5から、表6のように箱ひげ図用のデータを用意し、グラフ作成用の データを作成し、グラフを作成します。

- ① 箱ひげ図データを作成します。セル B35 から B39 までに 4, 3, 2, 1, 0 を用意しておき ます。セル B21 に「=QUARTILE(B\$4:B\$18, B35)」とし、フィルハンドルを G25 までドラッグ して表を完成させます。
- ② 次にグラフ作成用データ、「最大値-75%」、「75%-中央値」、「中央値-25%」、 「25%」、「25%-最小値」を単純計算で作成します。「最大値-75%」がヒゲの上限、 「25%-最小値」がヒゲの下限です。
- ③ セル B30 から G32 までを選択し、「挿入」タグの「グラフ」グループの「縦棒」か ら「縦棒積み上げ」を選択します。次いで、グラフの空白部をクリック後、右クリックし、 「データの選択」を選択し、表の中の項目を選択したのち「編集」をクリックして、データ

表の項目名を指定します。「△」「▽」をクリックし、25%を下に表示させます。

- ④ 「25%」の縦棒をクリックし、その上で右クリックして、「データ系列の書式設定」を選択します。[塗りつぶし] タブで [塗りつぶしなし] をクリックします。続いて、[枠線の色] タブで [線なし] をクリック。グラフの75%をクリックし、同様にして、[塗りつぶしなし] をクリックします。また、同様にして、「中央値-75%」を [塗りつぶし] タブで [塗りつぶし (単色)]、「青」にします。
- ⑤ 誤差範囲の設定。「75%-中央値」の縦棒を選択後、「グラフツール」の「レイアウト」タグから「誤差範囲」、「その他の誤差範囲オプション」をクリックします。「誤差範囲の書式設定」ウィンドウの「縦軸誤差範囲」タブで「方向」を「正方向」に、「誤差範囲」を「ユーザー設定」に設定し、「値の設定」ボタンをクリックします。

「正の誤差の値」にグラフ用データの「最大値-75%」のセル範囲「B29:G29」を設定しま

す。[OK] ボタン、[閉じる] ボタンをクリックします。

同様にして、「縦軸誤差範囲」 タブで「方向」を「負方向」に て、「誤差範囲」はグラフ用デ ータの「25%ー最小値」のセ ル範囲「33: G33」を設定しま す。

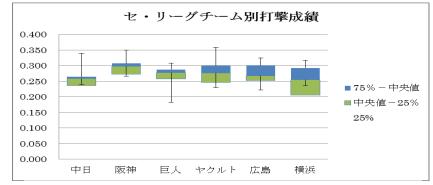


図 1 箱ひげ図のグラフ

3,5章から

表フに標準偏差を求める表。


表8 表7の完成図

表7のデータの値から、合計と平均を求め、更に、平均からの偏差、偏差の二乗、分散、標準偏差、を求めます。合計、平均の計算は略します。セル D11 の分散が、「=VARPA (B5: B9)」、

1	Α	В	С	D	E	F	G
	不偏分散及び	標本標準偏差	É				
2							
3	テキストの住	列題データ		p. 000			
4	ケース番号	データの値 (万円)	平均からの偏差 (万円)	偏差の2乗 (偏差平方)		標本標準偏差	
5	1	9	-2	4		20	
6	2	6	-5	25			
7	3	12	1	1			
8	4	18	7	49			
9	5	10	-1	1			_
0	合計	55		80 👍		偏差平方和	
1	平均	11		20 👍			
2				A 22			
3						不偏分精	-
4 5 6	不偏分散の)関数 VAR	(データの初め:デ	ータの終わり)		一一	X
6	表 9	不偏	分散			4	

F5 の標準偏差が、「=STDEVP(B5:B9)」です。

不偏分散は、セルD10の偏差平方和が、「=SUM(D5:D9)」、D11の不偏分散は、「=VARPA(B5:B9)」、F5の標本標準偏差が、「=STDEVP(B5:B9)」です。

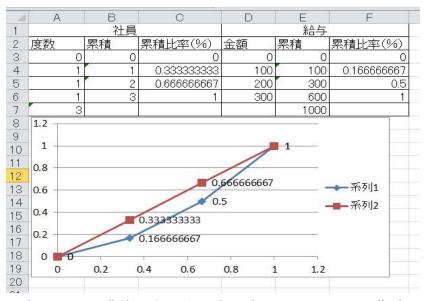
4,6章から

総務省の統計局から取り出したデータです。

平成 10 年のデータは なかったのでここで は平成 22 年の分だけ で計算します。

セル C4 から D23 までと、F4 から H23 までを算出し、このデー

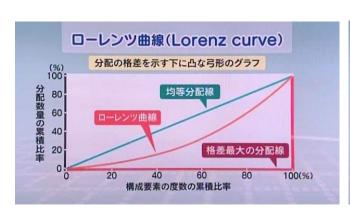
1	А	В	С	D	E	F	G	Н
1	貯蓄階級		世帯(H22	2)		貯蓄	₹(H22)	
2	(万円)	度数	構成 比率(%)	累積 比率(×軸)	階級 平均値	階級 総額	構成 比率(%)	累積 比率(Y軸)
3			0	0	0	0	0	C
4	100未満	1130			29			
5	100~200	564			143			
6	200~300	562		A G	241	2	W 6	
7	300~400	561			342			
8	400~500	455			444			
9	500~600	510			540			
10	600~700	400		Ä	642		N.	
11	700~800	350			747			
21	3,000~4,000	602			2,730			
22	4,000以上	1,002			3,432			
23	総計			8	8			

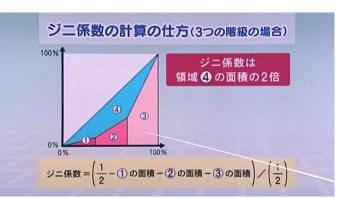

表 10 平成22年の世帯の貯蓄状況(総務省から)

- タ、「累積比率(X 軸)」「累積比率(Y 軸)」の値をもとにローレンツ曲線、ジニ係数をもとめよう。
- ① セル B23 に、総計「=SUM(B4:B22)」を求め、セル C4 に、「=B4/\$B\$23」を入力し、構成 比率、D4 に「=SUM(\$C\$3:C4)」とし、累積構成比率(X 軸)を求めます。そのセル B4、D4 のフィルハンドルを C22、D22 までドラッグします。
- ② セル E4 に、「=E4*B4」とし、そのセルのフィルハンドルを E22 までドラッグします。セル E23 に、総計「=SUM(E4:E22)」を求め、①と同様にして、構成比率と、累積構成比率 (Y軸) を求めます。
- ③ D列のD3からD22までを選択し、[CTRL] キーを押したまま H 列のH3からH22をドラッグして選択します。「挿入」タグ、「グラフ」グループの「散布図」をクリックします。

④ 作成した 1 回目のローレンツ曲線のグラフ(図 2)をアクティブにし、「グラフツール」タグの「デザイン」の「データの選択」をクリックし、データソースの選択画面で「追加」をクリックし、「系列 X の値」の項に「累積比率」即ちセル D4 から D22 までの範囲(D4:D22)を入力し、「系列 X の値」の項にも「累積比率」即ちセル D4 から D22 までの範囲(D4:D22)を入力します。「D4 のできます。

次回は、7章から15章を題材にします。


練習 ローレンツ曲線とジニ係数



給与はある程度格差を付けて 配られていますが、その給与を 均等に分配したときに比べてど のような具合になるのかを、「身 近な統計」の第6章の講義から、 引いてきました。

社員の累積比率と給与の累積比率から、ローレンツ曲線と均等分配線をグラフで示しましょう。

表 12 講義の中に出てきた表からローレンツ曲線

講義のテロップから